An interior point potential reduction algorithm for the linear complementarity problem

نویسندگان

  • Masakazu Kojima
  • Nimrod Megiddo
  • Yinyu Ye
چکیده

Abbreviated title: Interior-point algorithm for the LCP Abstract. The linear complementarity problem (LCP) can be viewed as the problem of minimizing x T y subject to y = M x + q and x; y 0. We are interested in nding a point with x T y < for a given > 0: The algorithm proceeds by iteratively reducing the potential function f (x; y) = ln x T y ? X ln x j y j ; where, for example, = 2n. The direction of movement in the original space can be viewed as follows. First, apply a linear scaling transformation to make the coordinates of the current point all equal to 1. Take a gradient step in the transformed space using the gradient of the transformed potential function, where the step size is either predetermined by the algorithm or decided by line search to minimize the value of the potential. Finally, map the point back to the original space. A bound on the worst-case performance of the algorithm depends on the parameter = (M;), which is deened as the minimum of the smallest eigenvalue of a matrix of the form where X and Y vary over the nonnegative diagonal matrices such that e T XY e and X jj Y jj n 2. If M is a P-matrix, is positive and the algorithm solves the problem in polynomial time in terms of the input size, j log j, and 1==. It is also shown that when M is positive semi-deenite, the choice of = 2n + p 2n yields a polynomial-time algorithm. This covers the convex quadratic minimization problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

An improved infeasible‎ ‎interior-point method for symmetric cone linear complementarity‎ ‎problem

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...

متن کامل

Corrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path

In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 1992